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ABSTRACT 

A stabilization theorem for discrete strongly monotone and nonexpansive 
dynamical systems on a Banach lattice is proved. This result is applied to a 
periodic-parabolic semilinear initial-boundary value problem to show the 
convergence of solutions towards periodic solutions. 

I. Introduction 

In this paper we are concerned with discrete-time monotone dynamical 

systems (S n)neN on a Banach lattice X. The point of  departure in our study is 
the construction for such systems of a nontrivial semicontinuous Liapunov 

operator V: X --- X. Specializing further to nonexpansive maps S we establish 
that the co-limit set corresponding to a relatively compact positive orbit is a 
subset of a special level set of  the operator, {x E X: V(x) = q }, where q is a rest 

point of S. Thus we obtain in this setting a variant of  the La Salle Invariance 

Principle [L]. We conclude that for discrete-time strongly monotone nonex- 

pansive dynamical systems the co-limit set of  relatively compact orbits is a 

single point. This result is well suited to prove stabilization of  solutions of  T- 

periodic initial-boundary value problems towards a T-periodic solution 

(whose existence we need not to assume a priori). In this context S is the 

section map. We illustrate this point by giving an application to a class of 
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parabolic equations and so in particular extend to the periodic case a result of 

Hirsch [Hi 1]. 
Our method is closely related to that used in Alikakos-Bates [A-B], where 

the continuous-time analog of our results is established. Dafermos [D 2] was 

the first to utilize semicontinuous Liapunov functions in his studies on the 

asymptotic behaviour. Here we follow a number of his ideas. Other related 

work on discrete-time monotone systems can be found in Hirsch [Hi 2]. For 

the behaviour of the iterates of a nonexpansive mapping without monotonicity 

hypotheses we refer to Pazy [P] and Brazis [B] where further references can be 

found. 
Making more intensive use of results of  Dafermos [D 2,3] we plan to extend 

in [A-H] our results to the class of strongly monotone uniform processes that 

in particular apply to almost periodic parabolic differential equations. 

2. Statement of the main results 

Let X be a Banach lattice with the properties 

(X. l) X is a-order-complete: the supremum of countable majorized subsets 

always exists, 

(X.2) X has a a-order-continuous norm: any increasing sequence with a 

supremum is convergent. 
Let P = X+ be the positive cone in Xwhich defines the ordering. For some of 

the results in this paper we will require X to satisfy in addition 
(X.3) there exists a Banach space Z C X such that P t3 Z has nonempty 

interior in Z, 
(X.4) X is strictly convex. 

We denote by _-< the order relation that P induces, and write x < y if 

y - x EP ,  x g: y, as well as x ,~y i fy  - x ~ in t (P  N Z). 

Let Y c X be a closed subset and S : Y ~ Y. We say that S is monotone if 

x _-<_ y implies that S(x) <= S(y), and strongly monotone provided S(Y) c Z and 

x < y implies S(x)~ S(y). Following [M] we introduce 

DEFINITION 2.1. An element a ~ Y is called a supersolution if S(u) _-< a, 

and u E Y is a subsolution if u_ =< S(u_ ). 

We remark that for monotone S the infimum of two supersolutions is again a 

supersolution, and the supremum of two subsolutions again a subsolution. 

DEFINITION 2.2. A point y is a positive limit of  Sn(x) if there is a sequence 
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of integers n i such that ni --" + ~ and Sn,(x)----y in X as i ~ oo. The positive 

limit set og(x) of x is the set of all its positive limit points. Relative to S a set 

H c Y is positively invariant if S(H) c H, and invariant if  S(H) = H. 

If S is continuous on Y, every positive limit set is closed and positively 

invariant. If the positive orbit y+ (x ) :=  {Sn(x) : n EN} is relatively compact 

in X, then tn(x) is nonempty, compact, invariant and invariantly connected 

(i.e. it is not the union of two nonempty disjoint closed invariant sets), and it is 

the smallest closed set that S~(x) approaches as n ---- ~ ([L, Thm. 5.2, p. 4]). 

In the rest of  this paper we take as Y the order interval [u_, u] defined by 

order-related sub- and supersolutions u_ < u. It follows from the monotonicity 

of S that S(Y) c Y. 
Now we are ready to state our main result. 

THEOREM 1. Let X satisfy (X.1)-(X.4), and let S:  Y---" Y be a strongly 

monotone map which is nonexpansive: I1 S ( x )  - S ( y )  IIx =< II x - y  IIx for 
x,  y E  Y. Let UoE Y, and assume that ~'+(u0) is relatively compact in X. Then 

to(u0) = {v} for some v ~ Y (which in general depends on u0]. 

As a consequence of the positive invariance of in(u0), v is a rest point, i.e. 

S ( v )  = v. 

REMARK 2.3. AS a simple application of Theorem 1 we obtain a conti- 

nuous-time analog of this result that was established in [Hi 1] (see also [A-B]). 

Let (S(t))t~o be a continuous semigroup of nonexpansive, monotone maps in 

X. We define u_(u) to be a subsolution (supersolution) ifS(t)u_ >= u_(S(t)a < u) 

for t > 0. Thus the order-interval Y = [u_, u] determined by order-related sub- 
and supersolutions u_ < a is positively invariant under S. Let X satisfy the 

hypotheses (X. 1)-(X.4). Assume that for t > 0, S( t )Y  c Z and the map S(t) is 

strongly monotone. For uoEX we define the positive orbit ~,+(Uo): = 

{S(t)Uo: t > 0} and the ~o-limit set og(u0) := {~EX:  ~ = lim S(tn)Uo for some 
sequence t,--* + oo }. 

THEOREM 1'. Let X, (S(t))t>=o be as above, Uo~ Y, and assume that ~'+(u0) 
is relatively compact in X. Then og(u0) = {v}, where v is a rest point of  S, i.e. 

S(t)v = v for t > O. 

PROOF. Let T > 0 be an arbitrary number and define St(u) :=  S(T)u for 

u ~ Y. It follows that (S~-)n ~N is a discrete-time dynamical system satisfying the 

hypotheses of Theorem 1. Thus, for n - - -~ ,  
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(2.1) S~-(Uo)--'-v, St(v) = v. 

Next define Sr/ i (u):=S(T/ i )u  to obtain that S~-/,(uo)~v, Sr/~(v)= v, i =  
I, 2 . . . . .  It follows from the semigroup property and the continuity of the 
map t---'S(t)Uo that S(t)v = v for all t > 0 ,  and since S is nonexpansive, 

o (u0) = {v} .  []  

We now introduce the setting for the application of Theorem I to periodic- 
parabolic differential equations. Let f~ be a bounded domain in R N (N > I) 
with boundary 3f~ of class C 2, and let Z¢ :=  O/Ot + d ( x ,  D) be a uniformly 
parabolic linear differential expression with 

N N 
sO(x, D)u = - Z D;(ajk(X)DkU) + ~ aj(x)O;u + a~(x)u 

j ,k=l j ~ l  

( D j 9  - 0/0x;). We assume_ that the coefficient functions ark = ak; and aj belong to 
G(f~) and that a0 E C(f~). Let further fl ~ Cl(Of~, R N) be an outward pointing, 

nowhere tangent vectorfield on 0[2 and flo E C~(Of~), Po > O. Define the bound- 
ary operator ~ = ~ (x ,  D) either by ~ u  = u (Dirichlet case) or by ~ u  = 
du/Op + Pou (Neumann or regular oblique derivative boundary conditions). 
Finally let the continuous function g" (x, t, ~)E f~ × R X R ~ g(x, t, ~)~  R be 
Lipschitz continuous in (x, ~) and H61der continuous and T-periodic in t, for 
some given T > 0. Assume that 0g/0~ exists, and that it enjoys the same 
properties. 

We consider the semilinear parabolic initial-boundary value problem 

t 
' .~u = g(x, t, u) in t2 × R +, 

(2.2) ~ u  = 0 in Ot2 X R +, 

[ u ( . ,  0) = Uo on [2. 

DEFINITION 2.4. The function a E C2'~(t2 X ]0, T]) tq Ct'°(f~ × [0, T]) is 

called a supersolution on the interval [0, T] provided 

{ ~ a  > g ( . , . , a )  in [2 X ]0, T], 

~ a  > 0 on 0[2 X ]0, T]; 

a subsolution is defined with reversed inequality signs. 

A simple consequence of Theorem 1 is the following 
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THEOREM 2. Suppose u_ < a are sub- and supersolutions on [0, T], respecti- 

vely, in the sense o f  Definition 2.4, with 

(2.3) 
m 

u_(., 0) < u_(., T), a( . ,  O) >- a( . ,  T) o n ~ .  

Let 

g(x) : - -  m a x  Og (x, t, 

where the maximum is taken over the set {(t, ~)E[0, T] X R : u_(x, t) < ~ < 

u(x, t)}, andassume that thepair( - ~t, ,~), where ~ :=  ~ - g(x), generates 

a contraction semigroup on X = L2(fl). Then the solution of(2.2) with UoE 

[u_(., 0), a ( . ,  0)] exists for all t > 0 and converges strongly in X towards a 

T-periodic solution w o f  

{ ~ w = g ( . , . , w )  i n g 2 × R  

~ w  = 0 on Of~ X R 

a s t ~ + ~ .  

Sufficient conditions for the positive analytic semigroup generated by 
( - ~ ,  8 )  in X = L ~(fl) to be nonexpansive, i.e. for the realization .42 in X to 

be a monotone operator, can be found in [Am, Sect. I l]. For example, let 

fl = fla be the conormal vectorfield on 0f~, let ~ = O/Offo, and assume that 

N N 
a o -  g - Y. Djaj > O inf2, Y~ ajvj >-__ O 

j= l  j - i  
on 0~ 

(v = (v~ . . . . .  v,) is the outer normal to 0f~). 

Theorem 2 is an extension to the periodic case of a result due to Hirsch 

[Hi l] (see also [A-B]). We note in passing that the hypotheses in [Hi 1,A-B] 

do not seem to suffice for the generated semigroup to be nonexpansive in X. 

We mention also that if,42 is a nonnegative selfadjoint operator, Theorem 2 

follows from Theorem 3 (ii) of  Kenmochi-Otani [K-O]. In the nonvariational 

case, no such result appears to be known so far. 
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3. An invariance principle for time-discrete monotone and nonexpansive 
dynamical systems 

Let S : Y---} Y be monotone and continuous, Y = [u_, a ] c X, and assume 

that X satisfies conditions (X. 1)-(X.2). For u E Y we set Xu := {0E Y : ¢  >_ u, 

¢ supersolution}. Note that Zu is nonempty. 

LEMMA 3.1. E, possesses a unique minimal element denoted by l?(u). 

The map l?: Y --- Y is called the upper Liapunov operator. 

PROOF OF LEMMA 3.1. Let J be a strictly positive linear functional on X. 

We construct a sequence (¢,),~N in Y-u as follows: 

¢0 is arbitrary; 

O,+t < 0, is such that J(O, - 0 n + l )  >-~ ½m(~,) where 

re(C) :=  sup{ J(¢ - ~/): ~,~ Eu, V < ¢), 0~Z~.  

Since J ( ¢ .  - ¢n+1) + J(O.+~ - ~u) = J(¢. - ~/) (q/E Eu, V < O.+L), we have 

½m(¢~) + m(¢,+1) < m(¢,)  

and infer that m ( ¢ , ) ~ 0  as n ---" ~ .  Set 0oo := l im ,~ .  ~,; by (X.1)-(X.2) this 
limit exists and lies in Y. It follows from S(¢,) < ¢, by continuity that ¢~ is a 

supersolution. Hence 0® ~ Xu. We claim that ~oo is a minimal element of Z~. 
Indeed, assume there exists ~/~ Eu with ~ /<  ¢o~. Then J(¢oo - q/) > 0, contra- 

dicting that 

J(¢® - ~') < J(O, - ~) =< m(O,)--'O (n ~ oo). 

The uniqueness of a minimal element of X, is a consequence of the fact that Y., 
is closed under the inf operation. [] 

Analogously we construct the maximal element _V(u) of the set of  subsolu- 

tions lying below u. 

The technique used in the construction of l;'(u) is from the unpublished work 

[C-F-P]. 

LEMMA 3.2. (I is nonincreasing along trajectories, i.e. for uoEY,  

l?(S"+l(u0) ) < l?(S"(uo)), n ~ N .  

PROOF. By definition, S"(uo) <= l?(S"(uo)). Hence by monotonicity S" + ~(Uo) =< 
S(l?(S"(u0))) _-< l?(S"(uo)) since l?(S"(uo)) is a supersolution. It follows that 
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f ' (s"  +'(uo)) -<__ f'[ ~(S"(uo))] = f'(S"(uo)). [] 

PROPOSITION 3.3. (Invariance principle). Let  S : Y ~ Y be monotone and 
nonexpansive and let X satisfy ( X.  1)-(X.2). Let  Uo ~ Y,  and assume that 7+ ( Uo) 
is relatively compact in X .  Then 

co(u0) c { x E  Y: l;'(x) --- q} 

where q is a rest point  o f  S : S(tI) = #. 

PROOF. (i) Let v ~co(Uo). We claim that co(v) = co(Uo). It suffices to show 

that co(Uo) c co(v) since the other inclusion follows by the positive invariance 

o f  co. Let w E co(uo). Then 

v = lim Sk,(uo), w = lim Stn(Uo), 

where kn -"  ~ ,  l, ---- oo. Without  loss of  generality we may assume that m, :=  

l, - k, - -  + ~ .  Now 

II S ~ n ( v )  - -  W II ~ II S ~ " ( v )  - S ~ ' ( S k " ( U o ) )  II + II s m " ( s k " ( U o ) )  - w II 

---< II v - s k . ( U o )  II + II s t ' (Uo)  - w II 

---0 as n ~ oo, 

and hence w E co(v). Thus the claim is established. 

(ii) We show that co(Uo) is a subset o f  a level set of  17. Let v, w E co(u0). By (i), 

co(v) = c o ( w ) =  co(u0), hence in particular w E co(v). Thus there exists a se- 
quence (k,),~N with k, ---- oo such that Sko(v)-" w. By Lemma 3.2 the sequence 

of  supersolutions (f'(sk°(v))),eN is nonincreasing and by (X. 1)-(X.2) the limit 

lim 12(Skn(v)) exists. By continuity of  S, it is a supersolution. Since lT(Sk.(v)) > 
Sk.(v), it follows that lim IT(Sk.(v)) > w, and thus lim f'(Sko(v)) >= f'(w). Put- 

ting things together, 

12(v) > IT(Sk.(v)) > lim lT(Sk.(v)) >= 17(w). 

By symmetry,  I7(v) = I;'(w) = :  q. 

(iii) We claim that c] is a rest point  o f  S. Let v C cO(Uo). Then c] = l?(v)>== v. I f  

q is not an equilibrium, it is a strict supersolution, hence S ( q ) <  el. Conse- 

quently f '(S(v)) < I;'(S(#)) = S(#)  < q, since S(#)  is again a supersolution. But 

S ( v ) E  cO(Uo), and we arrive at a contradit ion to assertion (ii). [] 
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We remark that by step (i) in the above proof, if og(u0) contains a rest point v, 

then to(u0) = {v}. 

4. Proof of Theorem 1 

By the last remark it suffices to show that to(u0) contains a rest point. Let 
v E og(u0). Since S"(v )E  og(uo) by positive invariance, we have 

(4.1) 12(S"(v))=#, V.(S"(v))=q ( n ~ N )  

where t / and  q are the rest points which Proposition 3.3 and its analog for 
subsolutions provide. Thus q < S"(v) <= q. Assume that v is not a rest point. 
Then q < v  < # ,  and by strong monotonicity q~.S(v )~ .# .  Since S is 
nonexpansive on the closed convex subset Y of the strictly convex Banach 
space X, the set of fixed points of S is convex ([Br, Thm. 8.2]). Thus for each 
2 E [0, 1 ], q~ : = 2q + (1 - 2)q is again a rest point. For 0 < 2 sufficiently small, 
S(v) < q~ < q. Therefore l;'(S(v)) < qa, which contradicts (4.1). Thus v is a rest 
point. [] 

5. Proof of Theorem 2 

Set X: = L2(~')) and Z" = Cd(f~) in case of Dirichlet boundary conditions, 
Z :=  C(f~) in case of Neumann or regular oblique derivative boundary 
conditions. Equation (2.2) can be written abstractly in the form 

(5.1)  
du/dt = - A 2 u  + g(t,  U), 

u(O) = Uo, 

t > 0 ,  

where .4 2 is the realization of (~¢ ,~)  in L2(~'2). We take as Y :=  
{u0~X: u(0) _-< u0 _-< u(0)}. By applying the maximum principle to (2.2) we 
obtain that for u0~ Ythe solution u(t) satisfies u_ (t) _-< u(t) < a(t), t >= O. Since 
the functions u_(., t) and a( . ,  t) are uniformly bounded in X, without loss of 
generality we may take g to be bounded on R + × X. It follows that (5.1) is 
well-posed in Y, and that the set {u(t)  : t >-_ 0} is relatively compact in X([He, 
Paragraph 3.3]). Let v(t) be another solution corresponding to some v0E Y. 
Then (2.2) implies that 
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l d  

2 dt 

(5.2) 

- -  II u( t ) -  v(t) I1~ ~ - y Az(u - v)(t).(u - v)(t)dx + f g(u - v)~(t)dx 

= f n  - A2(u - v ) ( t ) .  (u - v ) ( t )dx ,  

and by the contraction hypothesis on ~t we obtain that 

(5.3) [[ u(t2) - v(t2)Hx --< ]1 u(t l)  - V(tl)I[x, 

Next we define 

t~ < h. 

S(uo) :=  u ( T ) .  

It follows from (2.3) and the maximum principle that S(u_ (0)) >_- u_ (0), 

S(O.(O)) <= u(O), that is, u_ (0) and u(0) are a sub- and a supersolution for S in the 

sense of Definition 2.1. Finally applying the maximum principle once more we 

obtain that S is nonexpansive, and so Theorem 1 applies to give that 

(5.4) S " ( u o ) ~ q ,  S ( q ) = q .  

Let w be the solution to (5.1) with w(0)= q. Uniqueness shows that w is 

periodic. Let [t] be the number of multiples of T contained in t > 0. Then 

II u(t) - w ( t ) I I x  --< II u ( [ t l T )  - w ( [ t l T ) I l x  = II s"~(Uo) - q I l x ~ O  

as t---, + oo. [] 

We remark that we did not have to assume the existence of a periodic 

solution of (2.2) between u_(t) and a(t). In the present situation existence 
is, however, well-known, even for considerably more general operators 
(e.g. [D-H]). 
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